Dosimetry of Nano-Radio-Ytterbium Therapy by MIRD and MCNP methods for humans’ organs

نویسندگان

  • Fariba Johari- Daha Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran. ), Tel: +98-21-82062382.,
  • Leila Moghaddam-Banaem Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran. ), Tel: +98-21-82062382.,
  • Navideh Aghaei-Amirkhizi Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran. ), Tel: +98-21-82062382.,
  • Sodeh Sadjadi Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran. ), Tel: +98-21-82062382.,
چکیده مقاله:

Introduction: Nano radio-pharmaceutical therapy (NRPT) is a new method for solid tumor therapy. The treatment uses a radioactive form of radionuclide encapsulated in the poly amido amine dendrimers. The poly (amidoamine) (PAMAM) dendrimers have attracted attentions for cancer treatment by their characteristics of targeted drug carriers, delivery agents, and imaging agents in human systems. We have reported the preparation of dendrimer encapsulated ytterbium-175 radio- nanoparticles and its biodistribution in tumor bearing rats.175Yb (T1/2=4.2 days), decays to stable 175Lu with a β- emitter with 470 keV maximum energy (86.5%) and γ photons of 113 keV (1.9%), 282keV (3.1%) and 396 keV (6.5%) that are appropriate for imaging. This paper aims at comparing dosimetric assessments in human performed with Monte Carlo codes and MIRD based on the experimental results of biodistribution of dendrimer encapsulated ytterbium-175.Materials and Methods: All chemical materials including, Ytterbium (III) oxide (Yb2O3), PAMAMG5-NH2 dendrimer in 5% methanol solution and HNO3, Sodium boro- hydride (NaBH4) were purchased from Sigma Aldrich Chemical Co. USA and Merck, Germany. For biodistribution study 20 female Balb/c mice were purchased from Pasteur Institute of Iran. To estimate the absorbed dose by both methods, MCNP and MIRD, the cumulated activity in source organs were calculated by the percentage of injected dose in humans’ organs. The residence times (τ) in the source organs were obtained by integration of respective fit functions, on biokinetics curve, after accounting for the physical decay of the 175Yb. The dose calculation was done for a certain group of organs of human following the MIRD technique. To simulate the problem with MCNP, the ORNL phantom was used. The desired result for this study is absorbed doses of vital organs (liver, spleen, lung and kidney). Results: The maximum uptake of radio-compound are in the liver, lung and spleen. The biodistribution shows the characteristics of nanoparticles such as size and surface hydrophobicity that determine the amount of adsorbed radiopharmaceuticals in organs. The initial fast distribution of radiotracer is throughout liver, lung, and Bone, with slower accumulation in blood and spleen. The result of 2 methods (MIRD versus MCNPX) reveals that MIRD underestimate the absorbed dose for bladder, bone, lung, and ovaries while overestimate for liver, muscle and spleen. In this study the absorbed dose from 175Yb- PAMAM estimated by MCNPX for liver, lung, spleen, kidney and bone are 1.266, 8.081E-01, 8.347E-01, 3.979E-02 and 1.706E-02 mGy/MBq respectively Conclusion: Owing to the stability of PAMAM encapsulated Yb-175 and the size of nano- particle the concentrations are mostly in liver and lungs. State of- the-art dosimetry depends on the duration of the biokinetics of the radiopharmaceutical and a calculation of residence times including an analysis of the errors associated with the respective calculation that aimed in this study. The results showed that this nano-radiopharmaceutical has potential of application for liver and lung tumors.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

comparison of three methods of calculation, experimental and monte carlo simulation in investigation of organ doses (thyroid, sternum, cervical vertebra) in radioiodine therapy

introduction: radioiodine therapy is an effective method for treating thyroid cancer carcinoma, but it has some affects on normal tissues, hence dosimetry of vital organs are important to weigh the risks and benefits of this method. the aim of this study is to measure the absorbed doses of important organs by mcnp (monte carlo n particle) simulation and comparing the results of different method...

متن کامل

MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy.

The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides and radionuclide conjugation chemistry, and the increased availability of alpha-emitters appropriate for clinical use, have recently led to patient trials of radiopharmaceuticals labeled with alpha-particle emitters. Although alpha-emitters have ...

متن کامل

Effective dose assessment in body organs after injection of 131I-MIBG

Introduction: Development of a novel radiopharmaceutical needs assessment of its biological- distribution in animal models, most commonly mice prior to its common application. This study describes the biodistribution and absorbed dose prediction 131I-MIBG in human organs after injection in mice.   Materials and Methods: In this research, 131I-MIBG radiopha...

متن کامل

MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy.

In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regio...

متن کامل

Determination of organ doses in radioiodine therapy using medical internal radiation dosimetry (MIRD) method

Background: Radioiodine therapy has proven to be an effective method in the treatment of patients with differentiated thyroid carcinoma after thyroidectomy. The scope of this study is to describe a method to obtain the dose of organs using medical internal radiation dosimetry (MIRD) method. At the end, the results of MIRD calculations were compared with thermoluminescent dosimeter (TLD...

متن کامل

development of different optical methods for determination of glucose using cadmium telluride quantum dots and silver nanoparticles

a simple, rapid and low-cost scanner spectroscopy method for the glucose determination by utilizing glucose oxidase and cdte/tga quantum dots as chromoionophore has been described. the detection was based on the combination of the glucose enzymatic reaction and the quenching effect of h2o2 on the cdte quantum dots (qds) photoluminescence.in this study glucose was determined by utilizing glucose...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 15  شماره Special Issue-12th. Iranian Congress of Medical Physics

صفحات  178- 178

تاریخ انتشار 2018-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023